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Depression is the second most common disease burden worldwide that threatens human health; however,
mechanisms underlying the development of depression remain unclear. A family of non-coding RNAs, circular
RNAs (circRNAs), has been shown to play a critical role in the development of depression by competitively
binding to certain microRNAs (miRNA) and regulating the expression of target genes. Behavioral symptoms of
depression may be ameliorated by knockdown or overexpression of depression-associated circRNAs. In this re-
view, we summarized important functions of circRNAs and analyzed the most recent findings regarding the
expression and biological function of circRNAs in depression. We discussed novel circRNA-based strategies to
illuminate potential therapeutic targets that may aid in the development of new treatments for depression.

1. Introduction concentration, and fatigue [2]. The pathogenesis of depression involves

a range of factors including genetics, biochemistry, immunology,

Depression, also known as major depressive disorder or clinical
depression, is a leading cause of morbidity and mortality worldwide,
with approximately 340 million people suffering from it and up to 1
million people dying each year due to depression-induced suicide [1].
Depression is a common mental health disorder which is characterized
by various emotional and physical problems including depressed mood,
inability to feel pleasure, low self-esteem, excessive guilt, suicidal
ideation, changes in appetite and sleep, psychomotor retardation, poor

neuroendocrinology, electrophysiology, neurological structure, psy-
chosocial factors, and epigenetic regulation [3]. In particular, the
exposure to maltreatment and neglect as a child may enhance the like-
lihood to develop depression [4]. The extreme sensory processing pat-
terns may contribute to the complex pathophysiology of depression and
unfavorable outcomes [5]. Additionally, a growing body of researches
indicated that imbalanced and abnormal internal linkage of nervous
system, immune system, and endocrine system form a complex network
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through neurotransmitters, cytokines, and endocrine hormones, result-
ing in the onset and progression of depression [6-8]. However, the
pathogenesis of depression has not been clearly defined.

Epigenetic regulatory mechanisms such as non-coding RNA (ncRNA)
regulation, DNA methylation, histone modification, and chromatin
remodeling are known to be associated with depression [9-11]. CircR-
NAs, a class of ncRNAs, are attracting increasing attention [12]. Unlike
mRNA, circRNAs form a covalently closed loop without the 5'-cap
structure and the 3'-poly-A tail [13]. Similar to competitive endogenous
RNA (ceRNA), circRNAs act as sponges to bind and inhibit the activity of
miRNAs [14], thus regulating the expression of target genes at the
transcriptional and post-transcriptional levels through destabilization
and translational silencing of mRNAs [15].

Accumulating evidence suggests that circRNAs are involved in many
major diseases, including depression [16], cancer [17,18], cardiovas-
cular disease [19], and innate immune response [20]. The participation
of circRNAs in pathogenesis of depression has attracted considerable
attention because aberrant expressions of circRNAs have been found
through transcriptome analyses in the peripheral blood of humans and
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animal models with depression. Likewise, the role of circRNAs as novel
therapeutic targets to ameliorate depression-like symptoms has been
demonstrated in various animal models [21-24]. In this study, through
literature retrieval in Pubmed (https://pubmed.ncbi.nlm.nih.gov/) with
“circRNA”, “depression”, and “major depressive disorder (MDD)” as the
keywords, we reviewed recent discoveries regarding the biogenesis and
biological functions of circRNAs and research progress on the utility of
circRNAs in treating depression.

2. Biogenesis of circRNAs

CircRNAs are an emerging class of endogenous non-coding RNAs
that form covalently closed, continuous loop structures lacking 5'- and
3'-terminal ends. Originating from various genomic regions, circRNAs
are synthesized by the back-splicing of protein-coding precursor mRNAs
(primarily in eukaryotes) [25,26]. Since discovered about four decades
ago, more than 10,000 circRNAs have been identified in organisms such
as worms, fruit flies, mice, monkeys, and humans [27-35], as well as in
plants, fungi, and protists [13,36-38]. Researchers have revealed that
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Fig. 1. CircRNA types and mechanisms of formation for two exonic circular RNAs (ecRNAs). A pre-mRNA produces various linear RNAs and circRNAs. In
circRNAs, ecRNAs are spliced to contain exon(s) alone, while circular intronic (ciRNAs) are composed of introns only, and EIciRNAs contain both introns and exons.
In model 1, exon-containing lariats are internally spliced into an exon circle through exon-skipping. Circularization of the lariat in model 2 is independent of exon-
skipping events; nonsequential donor-acceptor pairs into apposition by ALU complementarity or other RNA secondary structures.
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most circRNAs are formed from exons [39], implicating that they may
play a role in gene regulation and expression.

Three types of circRNAs have been reported, which are produced via
different molecular processes, including circular intronic RNAs (ciR-
NAs), retained-intron or exon-intron circRNAs (EIciRNAs), and inter-
genic circRNAs [40,41] (Fig. 1). Two different models of circRNA
formation have been proposed: an exon-skipping process known as
“Lariat-Driven Circularization” and a nonsequential donor-acceptor
pairing process called “Intron-Pairing-Driven Circularization” or
“direct back splicing” [28]. In the Lariat-Driven Circularization model,
canonical splicing generates a linear RNA with missing exons contained
within a lariat. Removal of the lariat and back-splicing then produce
circRNAs. In the Intron-Pairing-Driven Circularization model, back--
splicing generates a circRNA molecule and an exon-intron(s)-exon in-
termediate, which is then processed into a linear RNA with skipped
exons [42,43].

Independent of the mechanism of synthesis, circRNAs participate in
the development of diseases by regulating gene expression at several
levels, such as regulating mRNA splicing and transcription, interacting
with RNA-binding proteins (RBPs), and acting as miRNA sponges [14].
CircRNAs have been reported to affect cell autophagy, apoptosis, cell
proliferation, aging, and cancer regulation in numerous ways [44-46].
CircRNAs are abundantly expressed in the brain and are highly active at
neuronal synapses [21,28,47-50], suggesting that circRNAs play
prominent roles in brain health and neurological diseases, including
neuropsychiatric disorders.

3. Functional implications of circRNAs

As a novel class of endogenous noncoding RNAs, circRNAs play
numerous roles in maintaining normal reproductive development and
aging, and may influence disease development. CircRNAs may act as
miRNA sponges by interacting with RBPs, and regulating mRNA tran-
scription, splicing, and translation [14,41,51]. Recent studies have
shown that circRNAs are pseudogenes that can be translated into pep-
tides [52-56] (Fig. 2).

3.1. Inhibition of miRNA function

MiRNAs negatively regulate gene expression by inhibiting mRNA
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translation or by facilitating mRNA degradation [57]. MiRNAs affect the
stability of an mRNA target by complementary base pairing with the
3'-untranslated region (3'-UTR) of the mRNA and modulating gene
expression in the nucleus and cytoplasm [58,59]. CeRNAs compete with
miRNAs for miRNA response elements (MREs) and affect the activity of
miRNA molecules on target mRNAs [58,60]. Recently, a circRNA was
confirmed to be a variant of a ceRNA, which competitively paired with
an MRE to exert a post-transcriptional regulatory effect on the target
mRNAs [61]. Hansen et al. have shown that the human cerebellar
degeneration-related protein 1 antisense (CDR1las) circRNA acts as a
miR-7 sponge and named this circular transcript circular RNA sponge for
miR-7 (ciRS-7). CiRS-7 contains more than 70 selectively conserved
miRNA target sites [14]. CiRS-7 is abundantly expressed in the
mammalian brain [49,62], where it increases the translation of the
miR-7 target mRNA [14,49]. Similarly, circular ZNF609 (cirZNF609)
functions as a sponge to regulate the expression of the miR-150-5p target
molecule AKT serine/threonine kinase 3 (AKT3) [63]. Moreover, studies
have shown that circular Foxo3 (circFoxo3) [15], mm9_circ_012559
[64], and circRNAs from the human CyH> zinc finger gene family also
function as miRNA sponges [30]. Although a large number of studies
have reported that circRNAs function as molecular sponges, it is not
known whether miRNAs sponged by circRNAs affect the development
and progression of neurological diseases, especially emotional diseases
such as depression.

3.2. Interactions with proteins and RBPs

CircRNAs directly bind to target proteins to regulate protein func-
tion. CircFoxo3 produces anti-proliferative effects and blocks cell cycle
progression by weakening the activity of cyclin-dependent kinase 2
(CDK2) through formation of the circFoxo3-p21-CDK2 ternary complex
[15]. Ectopic expression of circFoxo3 has been observed to induce
cellular senescence by preventing nuclear translocation of the following
proteins: anti-senescence protein inhibitor of differentiation or DNA
binding protein (ID1), E2F transcription factor 1 (E2F1), anti-stress
protein known as focal adhesion kinase (FAK), and hypoxia-inducible
factor a (HIFa). CircRNAs may bind to RBPs to regulate the splicing of
mRNAs. Circular MBL (circMBL) contains conserved muscleblind
(MBL/MBNL1) RNA binding sites, which are derived from the second
exon of the MBL mRNA. The specific binding of circMBL to MBL mRNA
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Fig. 2. Schematic representation of circRNA molecular functions. (A) CircRNAs act as miRNA sponges by interacting with AGO proteins and binding to miRNA
response elements, thereby competing with miRNAs to modulate gene expression. (B) CircRNAs also may bind to RBPs and some proteins. (C) Some circRNAs may be
translated to form functional proteins. (D) CircRNAs regulate transcription by interacting with RNA Pol II and influencing the expression of their parental genes.
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regulates gene expression by inhibiting the linear splicing of the MBL
mRNA [65]. Additionally, circular PABPN1 (circPABPN1) has been re-
ported to inhibit linear splicing by binding to the HuR protein to reduce
HeLa cell proliferation and PABPN1 translation [66]. Regardless of
inhibiting cell proliferation or blocking the cell cycle, circRNAs appear
to play a vital role in the pathogenesis of mental diseases, which may
make circRNAs a potential target of therapeutic drugs for mental
diseases.

3.3. Transcription and translation

CircRNAs are believed to regulate gene transcription. EIciRNAs (a
subclass of circRNAs) have been shown to promote gene transcription
through interactions with Ul small nuclear RNAs (snRNAs) and RNA
polymerase II (Pol II) [41]. Processing of linear mRNAs competes with
the processing of circRNAs, resulting in a negative correlation between
the splicing efficiency of certain genes and the generation of circRNAs
[65]. Emerging evidence indicates that a small number of circRNAs can
be translated despite lacking both terminal 5’ and 3’ ends [53,55,56].

4. CircRNAs and depression
4.1. CircRNAs, brain development, and neurological disorders

CircRNAs maintain specificity and conservatism in the process of
dynamic expression and are highly enriched in the mammalian brain,
independent of linear transcripts [62]. A study by Rybak et al. demon-
strated that more than half of 15,849 mouse circRNAs, which are highly
abundant, conserved, and dynamically expressed in the brain, are
upregulated during the maturation of neurons [62,65]. Many circRNAs
appear to be particularly enriched in the cerebellum, a brain area rich in
neuronal spines, synapses, and neurons, indicating possible involvement
of circRNAs in the regulation of the nervous system. Compared with
other cytoplasmic RNAs, circRNAs seem to be more prone to being
localized in synapses and their expression is correlated with neural
plasticity, which further supports an important function of circRNAs in
synaptic transmission [50,62].

CircRNAs are believed to play essential roles in neurological disor-
ders because they back-splice from neural genes and many circRNAs
originate from genes with pivotal regulatory functions in neurons and in
brain development [67]. The links between circRNAs and neurological
disorders such as Alzheimer’s disease (AD), Parkinson’s disease (PD),
multiple sclerosis, and schizophrenia (SZ) have been widely confirmed.
For example, miR-7 is expressed in tyrosine hydroxylase-positive nigral
neurons in mice and humans. MiR-7 targets the PD-related a-synuclein
protein [68] and protects dopaminergic SH-SY5Y cells, as well as neural
progenitor cells derived from the ReNcell VM cell line, from 1-Meth-
yl-4-Phenyl-Pyridinium (MPP(+))-induced toxicity. The protective ef-
fect of miR-7 occurs by relieving nuclear factor-kB (NF-kB) suppression
and by reducing RelA protein expression [69]. Interestingly, the
circRNA of human CDR1as/ciRS-7 is a miR-7 sponge, which harbors 74
binding sites for miR-7 and is able to bind to the argonaute (AGO)
protein in a miR-7-dependent manner. Binding to the AGO protein al-
lows the circRNA of human CDR1as/ciRS-7 to participate in the initia-
tion and progression of PD [14,70].

In an animal model where the CR1as locus was removed from the
mouse genome, CDR1as-deficient mice displayed a strongly impaired
sensorimotor gating deficiency in which the animals were unable to
filter out unnecessary information. A similar deficiency has been asso-
ciated with neuropsychiatric disorders in humans [49]. In addition,
dysregulation of ciRS-7 has been found in zebrafish with an impaired
midbrain [71] and in the hippocampus of AD patients [45]. Expression
profiles of circRNAs were analyzed by enrichment sequencing in cere-
bral cortex (BA46) samples collected from 35 postmortem patients with
SZ and from healthy controls. Significant diversity for over 90,000
circRNAs was detected in the human dorsolateral prefrontal cortex
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(DLPFC) [72]. These studies suggest that circRNAs participate in the
pathogenesis of multiple neurological disorders.

4.2. Basic research progress and expression of circRNAs in depression

Depression is a neurological disorder known to be affected by
circRNAs through post-transcriptional regulation [73-76]. To study this
issue, various animal models with depression have been established
including the chronic unpredictable stress (CUS) model, chronic un-
predictable mild stress (CUMS) model, lipopolysaccharide (LPS) model,
and maternal separation (MS) model. Transcriptome analysis is a newly
emerging method of high-throughput sequencing that has shown
considerable promise for studying the role of circRNAs in the occurrence
and development of depression. Transcriptome analysis has been used to
identify thousands of circRNAs that are expressed in peripheral blood
mononuclear cells (PBMCs), and has shown that circRNAs are expressed
at significantly higher levels than corresponding linear mRNAs [33].
Also, prefrontal cortex (PFC) and hippocampus tissues are commonly
used in the analysis of differentially expressed circRNAs. Cui et al.
identified four differentially expressed circRNAs, namely hsa_-
circRNA_002143, hsa_circRNA_103636, hsa_circRNA_100679, and
hsa_circRNA_104953, between depression patients and controls using
quantitative Real-time Polymerase Chain Reaction (qRT-PCR) and a
human circRNA array, which included 13,617 human circRNAs [77]. In
an exploration of depression caused by conditions known as Qi stagna-
tion and blood stasis syndrome (QSBSS) in traditional Chinese medicine,
next-generation sequencing identified 2 circRNAs that were differen-
tially expressed, indicating a possible biological function of circRNAs in
the pathogenesis of QSBSS-induced depression [78]. A study by Zheng
et al. identified 20 circRNAs that were significantly over-expressed, and
17 circRNAs that were significantly under-expressed, in the PFC of MS
rats compared with a control group [79]. These results suggest that
circRNAs play an important role in depression; however, whether
depression leads to the differential expression of circRNAs or changes in
circRNA expression cause abnormal behavior requires further investi-
gation. Additional details about the expression of circRNAs in depres-
sion, such as the organisms and tissues that have been studied, are
summarized in Table 1.

Accumulating evidence has shown how circRNAs, important com-
ponents of the nervous system, are involved in the onset and develop-
ment of depression (Fig. 3). Researchers have reported that the level of
circular DYM (circDYM) was significantly lower in the peripheral blood
of patients with depression and in two depressive-like mouse models
induced by CUS and LPS. The lower level of circDYM may contribute to
the development of depression. Restoration of circDYM expression
significantly attenuated depressive-like behaviors, which may have been
mediated by circDYM acting as an endogenous miR-9 sponge to inhibit
miR-9 activity, resulting in a decrease of microglial activation via heat
shock protein 90 (HSP90) ubiquitination [21] (Fig. 3B). Furthermore,
circular STAG1 (circSTAG1) and circular HIPK2 (circHIPK2) were re-
ported to function in astrocyte activation. Aberrant expression of circ-
STAG1 and circHIPK2 has been correlated with astrocyte dysfunction,
which may partially induce depressive symptoms. Knockdown of
circHIPK2 and overexpression of circSTAG1 have been shown to induce
an inhibitory effect on the progression of depression, due to the binding
mechanism between circSTAG1 and human AlkB homolog 5 (ALKBH5)
and the miR-9 sponge function of circHIPK2. These results suggest that
these two circRNAs may be novel therapeutic targets for depression [16,
22] (Fig. 3C & D).

A relationship between type-2 diabetes mellitus (T2DM) and
depression has been previously reviewed [83]. An et al. identified 75
upregulated and 32 downregulated circRNAs in T2DM patients with
depression compared with T2DM patients without depression. Circular
TFRC (circTFRC) and circular TNIK (circTNIK) were significantly
upregulated in the depression group, suggesting that the function of
TFRC and TNIK may be related to the pathogenesis of depression [82].
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Table 1
CircRNAs in depression.
No. circRNA Gene Symbol ~ Organism Up- Down- Tissue Ref.
regulated regulated
1 mmu_circRNA010860 STAG1 Human & \/ Blood, Hippocampus, Plasma, Heart, Liver, Spleen, Lung, [16]
Mouse Kidney
2 mmu_circRNA002294 DOCK4 Mouse \/ Hippocampus [16]
3 mmu_circRNA004239 KALRN Mouse \/ Hippocampus [16]
4 mmu_circRNA002292 DOCK4 Mouse Vv Hippocampus [16]
5 hsa_circRNA_103636 DCUN1D4 Human \/ Blood [771
6 hsa_circRNA_002143 RNA5-8S5 Human \/ Blood [77]
7 hsa_circRNA_100679 SH3PXD2A Human \/ Blood [77]1
8 hsa_circRNA_104953 GTF3C5 Human \/ Blood [771
9 hsa_circRNA_103964 UBE2D2 v Blood [771
10 hsa_circRNA_104121 TRAM2 \/ Blood [77]1
11 hsa_circRNA_100018 GNB1 \/ Blood [771
12 hsa_circRNA_103257 CELSR1 \/ Blood [77]
13 hsa_circRNA_104600 VDAC3 v Blood [77]
14 hsa_circRNA_102802 LOC541471 \/ Blood [77]
15 hsa_circRNA_003251 — Human \/ Blood [80]
16 hsa_circRNA_015115 — Human \/ Blood [80]1
17 hsa_circRNA_100918 — Human \/ Blood [80]
18 hsa_circRNA_005019 — Human \/ Blood [80]
19 CircHIPK2 HIPK2 Mouse \/ Plasma, Hippocampus [22]
20 mmu_circ_0001223 Bnc2 Mouse \/ ventral medial prefrontal cortex [23]
21 rno_circRNA_014900 — Rat \/ Hippocampus [81]
22 rno_circRNA_005442 — Rat \/ Hippocampus [81]
23 CircDYM DYM Human & \/ Plasma, Hippocampus [21]
Mouse
24 chr3:195781950- TFRC Human \/ Blood [82]
195782172
25 hsa_circ_0002387 TNIK Human Blood [82]

Another study by Jiang et al. also found that 183 circRNAs were upre-
gulated and 64 circRNAs were downregulated in T2DM patients with
depression compared with diabetic patients without depression. Among
them, hsa_circRNA_003251 and hsa_circRNA_015115 may function as
miR-761 sponges and participate in the circRNA-miRNA-mRNA network
associated with depression [80].

4.3. Potential applications of circRNAs in the diagnosis and treatment of
depression

The Diagnostic and Statistical Manual of Mental Disorders published
by the American Psychiatric Association and the International Classifi-
cation of Diseases are globally used tools that define the epidemiology,
management, and clinical presentation of depression diseases; however,
the current diagnosis of depression lacks objective physiological and
biochemical indicators. The clinical definition of depression is mainly
based on symptomatic changes and the clinical experience of psychia-
trists, which may cause misdiagnoses [84]. Although antidepressants
and psychotherapy are currently the main clinical treatments for
depression, patients often become drug dependent or show poor
compliance because of long term continuous treatment, which are major
limitations of current treatment options [85-88]. As a consequence,
exploring novel diagnostic markers and molecular mechanisms of
depression is urgently needed. CircRNAs may be involved in the onset
and progression of depression, and thus may be potentially useful for
diagnosis and treatment of depression.

Multiple types of treatment, including pharmacologic agents, elec-
troacupuncture (EA), and other interventions, have been used success-
fully to produce anti-depressive effects. Molecular studies have shown
that alterations in levels of various circRNAs and the sponge effect of
circRNAs mediated by these treatments may play a vital role in regu-
lating depression and suggest potential applications of circRNAs in the
diagnosis and treatment of depression. For example, Cui et al. identified
four circRNAs that were differentially expressed between depression
patients and controls. After 4-week and 8-week antidepressant regimens
such as citalopram combined with mirtazapine, only down-regulated
hsa_circRNA_103636 recovered to normal levels, suggesting the

potential value of hsa_circRNA_103636 in the diagnosis and treatment of
depression [77]. Ketamine, a type of narcotic, has been reported to
generate rapid therapeutic effects in patients with depression and in
animal models [89]. In a recent study, Mao et al. further examined the
potential influence of circRNAs on the antidepressant effects of ketamine
by analyzing the expression profile of circRNAs in the hippocampus of
rats treated with Kketamine. Rno_circRNA_014900 and rno_-
circRNA_005442 emerged as potentially useful molecules in the treat-
ment of stress-related depression [81]. Additionally, Zhang et al. found
that saponins isolated from the leaves of Panax notoginseng (sanchi
ginseng) (SLPNs) could ameliorate depressive-like behavior in the CUMS
mouse model. CircRNA expression profiles obtained from high-through
sequencing of the ventral medial prefrontal cortex (VMPC) and hippo-
campus tissues of mice identified a large number of differentially
expressed circRNAs. Among them, mmu_circ_0001223 was significantly
down-regulated in CUMS mice, but was significantly up-regulated by
SLPN treatment, indicating that mmu_circ_0001223 may be an impor-
tant mediator of SLPN’s anti-depression effects [90]. Cyclic-AMP
response element binding protein 1 (CREB1) and brain derived neuro-
trophic factor (BNDF)-related signaling pathways have been reported to
participate in the pathogenesis of depression [91]. This study also
confirmed that elevated protein levels of CREB1 and BDNF induced by
SLPN may be attributed to up-regulation of mmu_circ_0001223 [90].
In addition to drugs and plant extracts, other types of interventions
may also exert anti-depression effects by modulating circRNAs.
Baduanjin is a traditional Chinese exercise therapy, which has been
widely practiced in China for centuries [92]. Previous studies have
shown that practicing Baduanjin may benefit patients with depression
and anxiety [93]. An et al. investigated molecular changes that occurred
during a 12-week Baduanjin intervention and identified 266 differen-
tially expressed circRNAs (170 down-regulated and 96 up-regulated).
This study provided valuable insights into potential mechanisms by
which Baduanjin may ameliorate the symptoms of depression and alter
blood glucose levels in depression patients [94]. Zheng et al. examined
the underlying mechanisms through which EA modulates depressive
behaviors. Their research identified beneficial therapeutic effects from
repeated EA treatment at the acupoints Baihui (GV20) and Yintang
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(GV29) in patients with depression-like behavioral deficits. Unbiased
genome-wide RNA sequencing was used to identify differentially
expressed circRNAs in the PFC of depression rats that resulted from EA
treatment. Two circRNAs that showed increased expression in depres-
sion rats compared with EA rats, and one circRNA that showed
decreased expression in the depression group compared with the EA
group, were identified. These three circRNAs, derived from
LOC102555866, Npepo, and Cdhl2, may play an important role in
ameliorating depression-related manifestations by EA at GV20 and
GV29 [79]. As mentioned above, restoration of circDYM expression
significantly ameliorates depressive-like behavior. Therefore, visual
cortical repetitive transcranial magnetic stimulation (rTMS), a nonin-
vasive intervention in depression, may up-regulate circDYM expression

to produce anti-depressive effects, further confirming the significant role
of circDYM as a biomarker for the diagnosis and treatment of depression
[95].

Recent studies have identified a correlation between the gut micro-
biota and depression. It is widely accepted that the alteration of
composition of bacterial communities in the gut caused by different
stress have the potential to affect various metabolic pathways which
may be involved in the development of depressive states [96,97]. The
participation of gut microbiome in bidirectional communication
pathway with the central nervous system (CNS) was named the micro-
biota—gut—brain axis, which is believed to regulate various central pro-
cesses through microbial metabolites [98]. To identify potential
biomarkers of depression in correlation with the metabolism of the gut
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microbiota may enhance the diagnostic criteria for depression [99]. In
addition, fecal microbiota transplantation (FMT) has been reported to
have therapeutic effects on depression [100]. Zhang et al. investigated
the underlying mechanisms that ameliorate depressive-like behaviors in
mouse models that received gut microbiota transplantation. This study
found that the expression level of circHIPK2 increased significantly in a
CUS mouse model with depression compared with a control group.
Transplantation of the gut microbiota from pyrin domain containing
protein 3 knock out (NLRP3 KO) mice alleviated astrocyte dysfunction
in CUS mice. Improved astrocyte function was attributed to the regu-
lation of circHIPK2 expression. This study revealed a regulatory effect of
the gut microbiota-circHIPK2-astrocyte axis in depression, and sug-
gested that transplantation of the gut microbiota may constitute a novel
therapeutic strategy for depression [22].

Although the role of circRNAs in depression is not completely un-
derstood, emerging research has confirmed the association between
circRNAs and depression, making circRNAs a promising new area in
antidepressant therapy.

5. Future perspectives

A series of recent studies has revealed that circRNAs exert a broad-
spectrum of biological activities in depression. The molecular mecha-
nisms related to the onset and progression of depression likely involve
circRNAs that function through multiple complex signal transduction
pathways. Most recently, several key circRNAs have been associated
with depression, such as circDYM and circHIPK2, providing trans-
lational evidence that circRNAs may represent novel therapeutic targets
for depression.

Numerous studies have shown that autophagy is closely related to
depression and that many antidepressants induce the autophagy
pathway [101-106]. Autophagy and circRNA activity may act syner-
gistically to modulate depression. According to recent research, protein
phosphatase 1 regulatory subunit 13B (PPP1R13B) regulated by
mmu_circ_012091 contributes to the proliferation and migration of lung
fibroblasts that rely on endoplasmic reticulum stress (ERS) and auto-
phagy [107]. Circular HECTD1 (CircHECTD1) and circHIPK2 activate
astrocytes via autophagic processes that target miR142-TIPARP and
miR124-2HG, respectively [108,109]. CircRNAs may block autophago-
some formation, maturation, selection, expansion, and degradation by
regulating the expression of, or the function of, autophagy-related pro-
teins and interfering with the normal internal environment of human
cells. Given the sponge function of circRNAs and direct targeting of some
proteins, circRNAs may function as key regulators in these processes.
Autophagy biogenesis activated by circRNAs may be targeted in future
depression therapies.

As the study of this area is in its infancy, this work is limited by the
paucity of literature on the corroborations between circRNA and
depression. Based on all existing research, we summarized the explo-
rations of circRNAs in patients or animal models with depression in the
past 20 years, and elucidated that circRNA plays a role in the mechanism
of depression, revealing it will become a potential target for the pre-
vention and treatment of depression. However, certain limitations exist
in modulating circRNA to combat depression such as safety concerns.
Meanwhile, whether changes in circRNAs are specific to depressed pa-
tients remain unknown, for the level of circRNAs may be affected by
various factors including age, smoking, or drug abuse [110]. In
conclusion, this issue would be a fruitful area for further work predic-
tively. We hope the readers deem this topic intriguing and pay more
attention to the etiology and treatment of depression from the
perspective of circRNA. We believe a greater focus on this issue could
produce interesting findings in the future, which may contribute in
several ways to our understanding of circRNA and depression.
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